Acta Crystallographica Section E

Structure Reports

Online

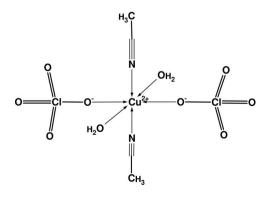
ISSN 1600-5368

Bis(acetonitrile- κN)diaquabis-(perchlorato- κO)copper(II)

Viktor A. Tafeenko, Stanislav I. Gurskiy and Leonid A. Aslanov*

Chemistry Department, Moscow State University, 119991 Moscow, Russian Federation

Correspondence e-mail: Aslanov@struct.chem.msu.ru


Received 27 May 2011; accepted 7 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.011$ Å; disorder in main residue; R factor = 0.066; wR factor = 0.192; data-to-parameter ratio = 9.1.

In the title compound, $[Cu(ClO_4)_2(CH_3CN)_2(H_2O)_2]$, the Cu^{2+} ion, located on a special position (site symmetry $\overline{1}$), is coordinated by six monodentate ligands, viz. an N-coordinated acetonitrile, a perchlorate anion and a water molecule, and their symmetry-related counterparts. The perchlorate anion is disordered over two sets of sites with occupancies of 0.53 (2) and 0.47 (2). The crystal structure is stabilized by $O-H\cdots O$ hydrogen bonds involving the perchlorate ion and aqua H atoms.

Related literature

For details of the changing Cu(II/I) redox potential with increasing acetonitrile contents in water–acetonitrile solution, see: Cox et al. (1988); Verma & Sood (1979); Sumalekshmy & Gopidas (2005); Ajayakumar et al. (2009); Drew et al. (1985). For the dependence of the luminescent properties (emission energy) of the 3-cyano-4-dicyanomethylene-5-oxo-4,5-dihydro-1*H*-pyrrol-2-olate (*A*)-based salts depend on the molecular environment around (*A*), see: Tafeenko et al. (2009, 2010). For transition metals as fluorescence quenchers, see: Xu et al. (2005, 2010). For a previous study on the formation of related compounds, see: Inamo et al. (2001).

Experimental

Crystal data

 $[Cu(ClO_4)_2(C_2H_3N)_2(H_2O)_2]$ $\gamma = 77.12 \ (1)^{\circ}$ $V = 334.1 (1) \text{ Å}^3$ $M_r = 380.59$ Triclinic, $P\overline{1}$ Z = 1a = 5.581 (1) ÅAg $K\alpha$ radiation b = 7.244 (2) Å $\lambda = 0.56085 \text{ Å}$ c = 8.733 (2) Å $\mu = 1.09 \text{ mm}^ \alpha = 82.82 (2)^{\circ}$ T = 296 K $\beta = 76.86 (1)^{\circ}$ $0.15 \times 0.1 \times 0.08 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 1020 reflections with I > 2s(I) diffractometer $R_{\text{int}} = 0.049$ 2518 measured reflections 2 standard reflections every 120 min 1259 independent reflections intensity decay; none

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066 \hspace{1cm} \text{H atoms treated by a mixture of} \\ wR(F^2) = 0.192 \hspace{1cm} \text{independent and constrained} \\ S = 1.08 \hspace{1cm} \text{refinement} \\ 1259 \hspace{0.1cm} \text{reflections} \hspace{1cm} \Delta \rho_{\text{max}} = 0.70 \hspace{0.1cm} \text{e} \hspace{0.1cm} \text{Å}^{-3} \\ 138 \hspace{0.1cm} \text{parameters} \hspace{1cm} \Delta \rho_{\text{min}} = -1.09 \hspace{0.1cm} \text{e} \hspace{0.1cm} \text{Å}^{-3} \\ 11 \hspace{0.1cm} \text{restraints} \end{array}$

Table 1 Hydrogen-bond geometry (\mathring{A} , $^{\circ}$).

D $ H$ $\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1-H11\cdots O3^{i}$	0.83 (7)	2.03 (7)	2.758 (17)	146 (6)
$O1-H12\cdots O3^{ii}$	0.79 (9)	2.22 (10)	3.00 (3)	165 (8)

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2000); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2110).

References

Ajayakumar, G., Sreenath, K. & Gopidas, K. R. (2009). Dalton Trans. pp. 1180–1186.

Brandenburg, K. (2000). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Cox, B. G., Jedral, W. & Palou, J. (1988). *J. Chem. Soc. Dalton Trans.* pp. 733–740.

Drew, M. G. B., Yates, P. C., Trocha-Grimshaw, J., McKillop, K. P. & Nelson, S. M. (1985). J. Chem. Soc. Chem. Commun. pp. 262–263.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Inamo, M., Kamiya, N., Inada, Y., Nomura, M. & Funahashi, S. (2001). Inorg. Chem. 40, 5636–5641.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sumalekshmy, S. & Gopidas, K. R. (2005). *Chem. Phys. Lett.* 413, 294–299.
Tafeenko, V. A., Gurskiy, S. I., Baranov, A. N., Kaisarova, T. V. & Aslanov, L. A. (2009). *Acta Cryst.* C65, m52–m55.

metal-organic compounds

Tafeenko, V. A., Gurskiy, S. I., Fazylbekov, M. F., Baranov, A. N. & Aslanov, L. A. (2010). Acta Cryst. C66, m32-m34. Verma, B. C. & Sood, R. K. (1979). Talanta, 26, 906-907.

Xu, Z., Han, S. J., Lee, C., Yoon, J. & Spring, D. R. (2010). Chem. Commun. 46, Xu, Z., Xiao, V., Qian, X., Cui, J. & Cui, D. (2005). Org. Lett. 7, 889-892.

supplementary m	aterials	

Acta Cryst. (2011). E67, m1125-m1126 [doi:10.1107/S1600536811027309]

Bis(acetonitrile-κN)diaquabis(perchlorato-κO)copper(II)

V. A. Tafeenko, S. I. Gurskiy and L. A. Aslanov

Comment

It was found (Tafeenko *et al.*, 2009; Tafeenko *et al.*, 2010) that the luminescent properties (emission energy) of the 3-cyano-4-dicyanomethylene-5-oxo-4,5-dihydro-1*H*-pyrrol-2-olate (A)-based salts depend on the molecular environment around (A). To investigate the effect of transition metals, which act usually as fluorescence quenchers (Xu *et al.*, 2005, 2010), we made an attempt to synthesize (A)-based salts with Cu²⁺. Acetonitrile treatment of crude crystalline mass, obtained after evaporation of CuSO₄ + BaA₂ (equivalent amounts) mixture in water-ethanol (v/v=1/1) solution, and posterior evaporation of an acetonitrile solution in an air atmosphere at room temperature resulted in formation of (A)-based salts with Cu⁺. We saw several reasons for the reduction of Cu²⁺ to Cu⁺:

- iodide anion Γ reduces Cu^{2+} in water-ethanol solution, as it was detected that BaA₂ salt used for synthesis contained Γ ;
- anion (A) exhibits of reducing properties;
- acetonitrile-water mixture causes reduction of copper(II) to copper(I), as it was documented that i) copper(II) salt solution in acetonitrile-water mixture is a powerful oxidizer of organic molecules (Verma *et al.*, 1979; Cox *et al.*,1988; Sumalekshmy *et al.*, 2005; Ajayakumar *et al.*, 2009); ii) acetonitrile can reduce Cu²⁺ to Cu⁺ (Drew *et al.*, 1985).

To find out whether acetonitrile-water mixture can cause a reduction of Cu^{2+} to Cu^{+} , we prepared a $Cu(ClO_4)_2$ solution in a mixture of 99.5% CH_3CN and 0.5% H_2O (volume percentage) and evaporated this solution, which yielded crystals of the title compound, $[Cu(CH_3CN)_2(H_2O)_2(ClO_4)_2]$. No other phases could be detected using powder-XRD. The crystal and molecular structure of the title compound (Fig.1) is presented in this paper.

The structure is composed of monomeric units built up around a Cu²⁺ on a special position (site symmetry -1). The Cu²⁺ cation is surrounded by six monodentate ligands, *viz.* an N-coordinated acetonitrile, a perchlorate anion and a water molecule, and their symmetry related counterparts. The perchlorate anion is disordered over two positions, with occupancies (0.53 (2) and 0.47 (2)), but it's O atoms displacement ellipsoids are still quite large, indicating possible rotational disorder, with the rotation axis passing through oxygen O1 of the perchlorate coordinated with Cu1 and Cl1. The complex adopts an elongated octahedral coordination geometry.

The axial Cu–O1 (perchlorate) bond length is 2.401 (15) and in plane Cu–N1(acetonitrile) 1.960 (5), Cu1–O2(aqua) 1.950 (5) Å respectively.

Besides ionic forces, the crystal structure is stabilized by hydrogen bonding interaction *via* the perchlorate and aqua H atoms (Fig. 2).

In conclusion, we have to note that the structure of the title compound differs from reported by Inamo with co-workers (Inamo *et al.*, 2001) compounds. They reporteded the formation of $[Cu(H_2O)_n(CH_3CN)_{(6-n)}]^{2+}$ (n = 0–3) in (water/acetonitrile) solutions with $[Cu(H_2O)_m(CH_3CN)_{6-m}]^{2+}$ (m < 3) as the dominant species for H_2O concentration lower than 0.5 M (99% acetonitrile).

Experimental

Blue crystals of the title salt were obtained by slow evaporation of $0.045 \, M \, \text{Cu}(\text{H}_2\text{O})_6 (\text{ClO}_4)_2$ solution in acetonitrile at room temperature in an air atmosphere. The crystals are not stable in the open air, so suitable for X-ray investigation crystal was placed in a sealed capillary. Copper(II) perchlorate hexahydrate of 98% (Aldrich) grade was used for synthesis. Acetonitrile was boiled with phosphorus pentaoxide and then distilled at 353 K.

Refinement

During the refinement a difference maps showed peaks consistent with the perchlorate atoms Cl1,O2—O5 being unequally disorder over two interpenetrating sites. This was allowed for by use of the appropriate *SHELXL* SAME, EADP restraints. At convergence the perchlorate disorder was modelled with occupancies (0.53 (2) and 0.47 (2)).

The positions of the H atoms of the water molecule were determined from Fourier difference maps and refined freely; the positions of the H atoms of the methyl group were placed in calculated positions and allowed to ride on their parent atoms [C—H = 0.96 Å]. $U_{iso}(H) = xU_{eq}(parent atom)$, where x = 1.5 for attached C atoms.

Figures

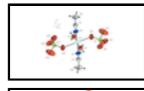


Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only one of the two disordered positions of the perchlorate ion is shown. Symmetry code: (i) -x, 1-y, -z.

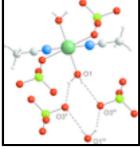


Fig. 2. The hydrogen bonding pattern in the title compound. H bonds are drawn as dashed lines. Symmetry codes (ii) x, 1–y, z; (iii): 1–x, 1–y, 1–z; (iv) 1–x, –y, 1–z.

$Bis (acetonitrile-\kappa N) diaquabis (perchlorato-\kappa O) copper (II)$

Crystal data

[Cu(ClO₄)₂(C₂H₃N)₂(H₂O)₂] Z = 1 $M_r = 380.59$ F(000) = 191

 $D_{\rm x} = 1.891 \; {\rm Mg \; m}^{-3}$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 Melting point: 422 K a = 5.581 (1) ÅAg $K\alpha$ radiation, $\lambda = 0.56085 \text{ Å}$ Cell parameters from 25 reflections b = 7.244 (2) Å

c = 8.733 (2) Å $\theta = 11-13^{\circ}$ $\alpha = 82.82 (2)^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 296 K $\beta = 76.86 (1)^{\circ}$ $\gamma = 77.12 (1)^{\circ}$ Prism, light-blue $0.15 \times 0.1 \times 0.08 \text{ mm}$ $V = 334.1 (1) \text{ Å}^3$

Data collection

Enraf-Nonius CAD-4 $R_{\rm int} = 0.049$ diffractometer

 $\theta_{\text{max}} = 20.0^{\circ}, \, \theta_{\text{min}} = 1.9^{\circ}$ Radiation source: fine-focus sealed tube

graphite $h = -6 \rightarrow 6$ $k = -8 \rightarrow 8$ non-profiled ω scans $l = -10 \rightarrow 10$ 2518 measured reflections

1259 independent reflections 2 standard reflections every 120 min

1020 reflections with I > 2s(I)intensity decay: none

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2

Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

 $R[F^2 > 2\sigma(F^2)] = 0.066$

H atoms treated by a mixture of independent and $wR(F^2) = 0.192$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.1161P)^2 + 0.4339P]$ S = 1.08

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.042$ 1259 reflections $\Delta \rho_{\text{max}} = 0.70 \text{ e Å}^{-3}$ 138 parameters $\Delta \rho_{min} = -1.09 \text{ e Å}^{-3}$ 11 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{\mathbb{A}}^2)$

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu1	0.0000	0.5000	0.5000	0.0477 (4)	
O1	0.2556 (10)	0.2741 (6)	0.5295 (6)	0.0574 (12)	
N1	0.2362 (12)	0.5987 (8)	0.3237 (7)	0.0631 (16)	
C1	0.3717 (13)	0.6605 (9)	0.2302 (8)	0.0555 (15)	
C2	0.5546 (16)	0.7387 (12)	0.1089 (9)	0.072(2)	
H2A	0.7197	0.6899	0.1297	0.109*	
H2B	0.5174	0.8747	0.1088	0.109*	
H2C	0.5478	0.7034	0.0079	0.109*	
Cl1	0.120(3)	0.803 (2)	0.7550 (16)	0.0538 (10)	0.53(2)
O2	0.195 (3)	0.656 (3)	0.651 (2)	0.082 (6)	0.53(2)
O3	0.295 (5)	0.921 (3)	0.694(3)	0.142 (9)	0.53(2)
O4	0.143 (3)	0.729(3)	0.9072 (14)	0.105 (6)	0.53(2)
O5	-0.124(3)	0.902(2)	0.755 (2)	0.096 (5)	0.53(2)
C111	0.132(3)	0.820(2)	0.7453 (18)	0.0538 (10)	0.47(2)
O21	0.112 (5)	0.637 (2)	0.717(2)	0.079 (6)	0.47(2)
O31	0.383 (2)	0.837 (3)	0.729(2)	0.080 (5)	0.47(2)
O41	0.008 (6)	0.853 (6)	0.899(3)	0.22(2)	0.47(2)
O51	0.017 (6)	0.955(2)	0.644 (4)	0.156 (12)	0.47(2)
H11	0.212 (12)	0.172 (10)	0.565 (7)	0.041 (16)*	
H12	0.357 (17)	0.228 (12)	0.458 (10)	0.07 (3)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0492 (7)	0.0344 (6)	0.0530(7)	-0.0110 (4)	0.0021 (4)	0.0024 (4)
O1	0.063(3)	0.034(2)	0.064(3)	-0.004(2)	0.001(2)	0.002(2)
N1	0.060(3)	0.045 (3)	0.068(3)	-0.013 (3)	0.014(3)	0.008(2)
C1	0.057 (4)	0.042(3)	0.060 (4)	-0.006(3)	-0.005(3)	0.002(3)
C2	0.073 (5)	0.075 (5)	0.060(4)	-0.028 (4)	0.005 (4)	0.016(3)
Cl1	0.0544 (13)	0.040(2)	0.0630 (16)	-0.0150 (12)	0.0034 (11)	-0.0097 (13)
O2	0.062 (9)	0.085 (11)	0.107 (13)	0.011 (7)	-0.033 (9)	-0.051 (10)
O3	0.115 (16)	0.087 (11)	0.23(2)	-0.061 (11)	-0.042 (14)	0.062 (13)
O4	0.093 (11)	0.152 (15)	0.046 (6)	-0.002 (9)	0.000(6)	0.013 (7)
O5	0.072 (8)	0.088 (11)	0.110 (11)	0.018 (7)	-0.007(7)	-0.028 (8)
Cl11	0.0544 (13)	0.040(2)	0.0630 (16)	-0.0150 (12)	0.0034 (11)	-0.0097 (13)
O21	0.111 (17)	0.047 (7)	0.090 (12)	-0.027(9)	-0.039 (10)	0.003 (7)
O31	0.044 (7)	0.117 (14)	0.085 (9)	-0.034(8)	0.006(6)	-0.028 (9)
O41	0.18(3)	0.31 (4)	0.17(3)	-0.16(3)	0.12(2)	-0.15 (3)
O51	0.19(3)	0.041 (8)	0.26(3)	-0.028 (10)	-0.11 (2)	0.040 (11)

Geometric parameters (Å, °)

Cu1—O1	1.950 (5)	C2—H2C	0.9600
Cu1—N1	1.960 (5)	Cl1—O5	1.390 (14)
Cu1—O2	2.401 (15)	Cl1—O4	1.391 (14)

O1—H11	0.83 (7)	Cl1—O3	1.414 (14)
O1—H12	0.79 (9)	Cl1—O2	1.418 (12)
N1—C1	1.103 (9)	Cl11—O51	1.386 (15)
C1—C2	1.450 (9)	Cl11—O41	1.387 (15)
C2—H2A	0.9600	Cl11—O31	1.409 (14)
C2—H2B	0.9600	Cl11—O21	1.413 (13)
O1—Cu1—O1 ⁱ	180.000 (1)	C1—C2—H2C	109.5
O1—Cu1—N1	90.4 (2)	H2A—C2—H2C	109.5
O1 ⁱ —Cu1—N1	89.6 (2)	H2B—C2—H2C	109.5
N1—Cu1—N1 ⁱ	180.0 (3)	O5—C11—O4	110.2 (13)
O1—Cu1—O2 ⁱ	93.3 (4)	O5—C11—O3	110.9 (15)
N1—Cu1—O2 ⁱ	97.7 (6)	O4—C11—O3	110.2 (14)
N1 ⁱ —Cu1—O2 ⁱ	82.3 (6)	O5—Cl1—O2	112.1 (11)
O1—Cu1—O2	86.7 (4)	O4—C11—O2	110.3 (13)
O2 ⁱ —Cu1—O2	180.0 (7)	O3—C11—O2	102.9 (14)
Cu1—O1—H11	120 (4)	Cl1—O2—Cu1	137.3 (11)
Cu1—O1—H12	123 (6)	O51—C111—O41	109 (2)
H11—O1—H12	93 (7)	O51—Cl11—O31	109.9 (15)
C1—N1—Cu1	176.0 (7)	O41—C111—O31	108.2 (15)
N1—C1—C2	178.6 (8)	O51—Cl11—O21	109.8 (13)
C1—C2—H2A	109.5	O41—C111—O21	107.7 (16)
C1—C2—H2B	109.5	O31—C111—O21	112.3 (14)
Н2А—С2—Н2В	109.5		

Symmetry codes: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H11···O3 ⁱⁱ	0.83 (7)	2.03 (7)	2.758 (17)	146 (6)
O1—H12···O3 ⁱⁱⁱ	0.79 (9)	2.22 (10)	3.00(3)	165 (8)

Symmetry codes: (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.

Fig. 1

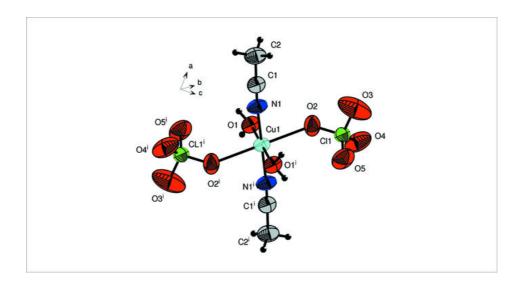
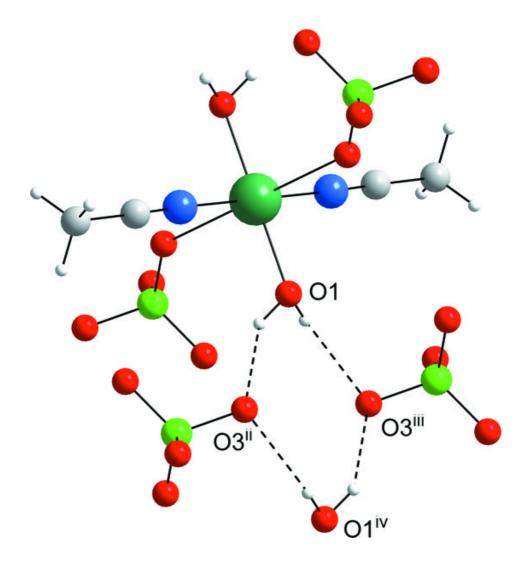



Fig. 2

